Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564870

RESUMO

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Assuntos
Sedum , Poluentes do Solo , Zinco/metabolismo , Cádmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte de Íons , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
2.
Plant Sci ; 343: 112060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460554

RESUMO

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Assuntos
Capsicum , Micoses , Zinco , Capsicum/microbiologia , Botrytis/fisiologia , Acetofenonas , Doenças das Plantas/microbiologia
3.
New Phytol ; 241(2): 793-810, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37915139

RESUMO

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Assuntos
Medicago truncatula , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cobre/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1865(1): 149015, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742749

RESUMO

The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.


Assuntos
Metaloproteínas , Trichodesmium , Trichodesmium/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Elétrons , Aclimatação
5.
Biochim Biophys Acta Bioenerg ; 1865(1): 149018, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852568

RESUMO

Low Zn availability in soils is a problem in many parts of the world, with tremendous consequences for food and feed production because Zn deficiency affects the yield and quality of plants. In this study we investigated the consequences of Zn-limitation in hydroponically cultivated soybean (Glycine max L.) plants. Parameters of photosynthesis biophysics were determined by spatially and spectrally resolved Kautsky and OJIP fluorescence kinetics and oxygen production at two time points (V4 stage, after five weeks, and pod development stage, R5-R6, after 8-10 weeks). Lower NPQ at 730 nm and lower quantum yield of electron transport flux until PSI acceptors were observed, indicating an inhibition of the PSI acceptor side. Metalloproteomics showed that down-regulation of Cu/Zn-superoxide dismutase (CuZnSOD) and Zn­carbonic anhydrase (CA) were primary consequences of Zn-limitation. This explained the effects on photosynthesis in terms of decreased use of excitons, which consequently led to oxidative stress. Indeed, untargeted metabolomics revealed an accumulation of lipid oxidation products in the Zn-deficient leaves. Further response to Zn deficiency included up-regulation of gene expression of cell wall metabolism, response to (a)biotic stressors and antioxidant activity, which correlated with accumulation of antioxidants, Vit B6, (iso)flavonoids and phytoalexins.


Assuntos
Clorofila , Soja , Transporte de Elétrons , Soja/genética , Clorofila/metabolismo , Transcriptoma , Metaboloma , Antioxidantes , Zinco
6.
Aquat Toxicol ; 264: 106731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890272

RESUMO

Pollution by potentially toxic trace metals, such as copper or zinc, is global. Both Cu and Zn are essential microelements, which in higher concentrations become toxic. The aquatic plant Pistia stratiotes(L. has great potential for phytoremediation. Also, it has an unusually large and easily detachable root cap, which makes it a suitable model for studying the potential role of the root cap in metal uptake. Plant response to environmentally relevant concentrations of Cu (0.1, 0.3, and 1 µM) and Zn (0.3, 1, and 3 µM) was investigated with the aim of studying their interaction and distribution at the root tissue level as well as revealing their tolerance mechanisms. Changes in the root anatomy and plant ionome were determined using light and fluorescence microscopy, ICP-MS, and µXRF imaging. Alterations in photosynthetic activity caused by Cu or Zn excesses were monitored by direct imaging of fast chlorophyll fluorescence kinetics (OJIP). Fe and Mn were preferentially localized in the root cap, while Ca, Cu, Ni, and Zn were mainly in the root tip regardless of the Cu/Zn treatment. Translocation of Cu and Zn to the leaves increased with higher doses, however the translocation factor was the lowest in the highest treatments. Measurements of photosynthetic parameters showed a higher susceptibility of electron transport flux from QA to QB under increasing Cu than Zn supply. This, along with our findings regarding the root anatomy and the differences in Ca accumulation and distribution, led to the conclusion that P. stratiotes is more effective for Zn remediation than Cu.


Assuntos
Araceae , Metais Pesados , Poluentes Químicos da Água , Zinco , Cobre , Poluentes Químicos da Água/toxicidade , Raízes de Plantas
7.
Plant Sci ; 336: 111864, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689279

RESUMO

To understand the role of Zn and Cd in anti-viral defence, Zn/Cd hyperaccumulator Noccaea caerulescens plants grown with deficient (0.3 µM), replete (10 µM) and excess (100 µM) Zn2+ and Cd (10 µM Zn2+ + 1 µM Cd2+) were infected with Turnip yellow mosaic virus (TYMV). Gas exchange and chlorophyll fluorescence kinetics analyses demonstrated direct TYMV effects on photosynthetic light reactions but N. caerulescens was more resistant against TYMV than the previously studied non-hyperaccumulator N. ochroleucum. Virus abundance and photosynthesis inhibition were the lowest in the high Zn and Cd treatments. RNAseq analysis of 10 µM Zn2+ plants revealed TYMV-induced upregulation of Ca transporters, chloroplastic ZTP29 and defence genes, but none of those that are known to be strongly involved in hyperaccumulation. Synchrotron µ-XRF tomography, however, showed that Zn hyperaccumulation remained strongest in vacuoles of epidermal storage cells regardless of infection. This was in contrast to N. ochroleucum, where apoplastic Zn drastically increased in response to TYMV. These results suggest that the antiviral response of N. caerulescens is less induced by the onset of this biotic stress, but it is rather a permanent resistant state of the plant. Real-time qPCR revealed upregulation of ferritin in Zn10 infected plants, suggesting Fe deprivation as a virus defence strategy under suboptimal Zn supply.


Assuntos
Brassicaceae , Tymovirus , Cádmio , Zinco/farmacologia , Brassicaceae/genética
8.
Metallomics ; 15(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740572

RESUMO

Iron is accumulated symplastically in kelp in a non-ferritin core that seems to be a general feature of brown algae. Microprobe studies show that Fe binding depends on tissue type. The sea is generally an iron-poor environment and brown algae were recognized in recent years for having a unique, ferritin-free iron storage system. Kelp (Laminaria digitata) and the filamentous brown alga Ectocarpus siliculosus were investigated using X-ray microprobe imaging and nanoprobe X-ray fluorescence tomography to explore the localization of iron, arsenic, strontium, and zinc, and micro-X-ray absorption near-edge structure (µXANES) to study Fe binding. Fe distribution in frozen hydrated environmental samples of both algae shows higher accumulation in the cortex with symplastic subcellular localization. This should be seen in the context of recent ultrastructural insight by cryofixation-freeze substitution that found a new type of cisternae that may have a storage function but differs from the apoplastic Fe accumulation found by conventional chemical fixation. Zn distribution co-localizes with Fe in E. siliculosus, whereas it is chiefly located in the L. digitata medulla, which is similar to As and Sr. Both As and Sr are mostly found at the cell wall of both algae. XANES spectra indicate that Fe in L. digitata is stored in a mineral non-ferritin core, due to the lack of ferritin-encoding genes. We show that the L. digitata cortex contains mostly a ferritin-like mineral, while the meristoderm may include an additional component.


Assuntos
Kelp , Laminaria , Oligoelementos , Kelp/metabolismo , Laminaria/metabolismo , Raios X , Síncrotrons , Oligoelementos/metabolismo , Ferro/metabolismo , Ferritinas/metabolismo , Minerais/metabolismo
9.
mBio ; 14(1): e0327922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36645306

RESUMO

Barium and strontium are often used as proxies of marine productivity in palaeoceanographic reconstructions of global climate. However, long-searched biological drivers for such correlations remain unknown. Here, we report that taxa within one of the most abundant groups of marine planktonic protists, diplonemids (Euglenozoa), are potent accumulators of intracellular barite (BaSO4), celestite (SrSO4), and strontiobarite (Ba,Sr)SO4. In culture, Namystinia karyoxenos accumulates Ba2+ and Sr2+ 42,000 and 10,000 times higher than the surrounding medium, forming barite and celestite representing 90% of the dry weight, the greatest concentration in biomass known to date. As heterotrophs, diplonemids are not restricted to the photic zone, and they are widespread in the oceans in astonishing abundance and diversity, as their distribution correlates with environmental particulate barite and celestite, prevailing in the mesopelagic zone. We found diplonemid predators, the filter-feeding zooplankton that produces fecal pellets containing the undigested celestite from diplonemids, facilitating its deposition on the seafloor. To the best of our knowledge, evidence for diplonemid biomineralization presents the strongest explanation for the occurrence of particulate barite and celestite in the marine environment. Both structures of the crystals and their variable chemical compositions found in diplonemids fit the properties of environmentally sampled particulate barite and celestite. Finally, we propose that diplonemids, which emerged during the Neoproterozoic era, qualify as impactful players in Ba2+/Sr2+ cycling in the ocean that has possibly contributed to sedimentary rock formation over long geological periods. IMPORTANCE We have identified that diplonemids, an abundant group of marine planktonic protists, accumulate conspicuous amounts of Sr2+ and Ba2+ in the form of intracellular barite and celestite crystals, in concentrations that greatly exceed those of the most efficient Ba/Sr-accumulating organisms known to date. We propose that diplonemids are potential players in Ba2+/Sr2+ cycling in the ocean and have possibly contributed to sedimentary rock formation over long geological periods. These organisms emerged during the Neoproterozoic era (590 to 900 million years ago), prior to known coccolithophore carbonate biomineralization (~200 million years ago). Based on reported data, the distribution of diplonemids in the oceans is correlated with the occurrence of particulate barite and celestite. Finally, diplonemids may provide new insights into the long-questioned biogenic origin of particulate barite and celestite and bring more understanding of the observed spatial-temporal correlation of the minerals with marine productivity used in reconstructions of past global climate.


Assuntos
Sulfato de Bário , Estrôncio , Bário , Oceanos e Mares , Plâncton , Minerais
10.
J Hazard Mater ; 442: 130062, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183514

RESUMO

Soybean (Glycine max (L.) Merr.) plants were exposed to various Cd concentrations from background and low non-toxic (0.5-50 nM) via sublethally toxic (< 550 nM) to highly, ultimately lethally toxic (3 µM) concentrations. Plants were cultivated hydroponically for 10 weeks until pod development stage of the control plants. The threshold and mechanism of sublethal Cd toxicity was investigated by metabolomics and metalloproteomics (HPLC-ICP-MS) measuring metal binding to proteins in the harvested roots. Spatial distribution of Cd was revealed by µXRF-CT. Specific binding of Cd to proteins already at 50 nM Cd revealed the likely high-affinity protein binding targets in roots, identified by protein purification from natural abundance. This revealed allantoinase, aquaporins, peroxidases and protein disulfide isomerase as the most likely high-affinity targets of Cd binding. Cd was deposited in cortex cell vacuoles at sublethal and bound to the cell walls of the outer cortex and the vascular bundle at lethal Cd. Cd binding to proteins likely inhibits them, and possibly induces detoxification mechanisms, as verified by metabolomics: allantoic acid and allantoate increased due to sublethal Cd toxicity. Changes of the Cd binding pattern indicated a detoxification strategy at lower Cd, but saturated binding sites at higher Cd concentrations.


Assuntos
Cádmio , /metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Raízes de Plantas/metabolismo , Metaboloma , Peroxidases/metabolismo
11.
J Exp Bot ; 73(19): 6516-6524, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35876626

RESUMO

Metal hyperaccumulation is an exclusive evolutionary trait contributing to efficient plant defence against biotic stress. The defence can be based on direct metal toxicity or the joint effects of accumulated metal and organic compounds, the latter being based on integrated signalling networks. While the role of metals in biotic stress defence of hyperaccumulators has been intensively studied, their role in the pathogen immunity of non-accumulator plants is far less understood. New findings show that in metal non-hyperaccumulating plants, localized hot spots of zinc, manganese, and iron increase plant immunity, while manipulation of nutrient availability may be used for priming against subsequent pathogen attack. Recent findings on the role of metals in plant-pathogen interactions are discussed considering the narrow line between deficiency and toxicity, host-pathogen nutrient competition and synergistic effects of simultaneous metal and biotic stress. We discuss the suitability of the direct-defence and joint-effects hypotheses in non-hyperaccumulating plants, and the involvement of metals as active centres of immunity-related enzymes. We also consider future challenges in revealing the mechanisms underlying metal-mediated plant immunity.


Assuntos
Metais Pesados , Oligoelementos , Plantas , Zinco/farmacologia , Metais
12.
Environ Sci Pollut Res Int ; 29(60): 90779-90790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35876991

RESUMO

Phytoextraction of rare earth elements (REE) from contaminated soils has gained importance during the last few decades. The Poços de Caldas municipality in Brazil is known for its mineral richness, including large reserves of REE. In this study, we report light REE (La, Ce, Sm, Pr, and Nd) in soils and plants collected in an area. Composite soil samples and plant individuals were collected, and total concentrations of LREE in soils were determined by wavelength dispersive X-ray fluorescence (WDXRF). The plant available LREE concentrations in soils were estimated upon the acetic acid method (F1 fractions) of the stepwise sequential extraction procedure, together with plant content that was analysed by inductively coupled plasma mass spectrometry (ICP-MS). The total sum concentrations of tested LREE in soils varied from 5.6 up to 37.9 g kg-1, the bioavailable fraction was ca. 1%, and a linear relationship was found between them. The only exception was Sm, whose availability was lesser and did not show a linear relationship. The concentration of LREE in non-accumulator plants varied from 1.3-950 mg kg-1 for Ce, La 1.1-99 mg kg-1, Sm 0.04-9.31 mg kg-1, Pr 0.1-24.1 mg kg-1, and Nd 0.55-81 mg kg-1. The concentration of LREE among shoots did not show a linear relation either with the available fraction or total content. The screening also revealed Christella dentata (Forssk.) Brownsey & Jermy, Thelypteridaceae family, as a promising hyperaccumulator species. The concentrations of LREE among shoots of six individuals of this species were in the ranges from 115 to 1872 mg kg-1 for Ce, La 190-703 mg kg-1, Sm 9-48 mg kg-1, Pr 32-144 mg kg-1, and Nd 105-478 mg kg-1.


Assuntos
Humanos , Brasil
13.
Microorganisms ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677319

RESUMO

The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.

14.
Biochim Biophys Acta Bioenerg ; 1862(10): 148472, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217700

RESUMO

In almost all photosynthetic organisms the photosynthetic pigments chlorophyll and bacteriochlorophyll (BChl) are Mg2+ containing complexes, but Mg2+ may be exchanged against other metal ions when these are present in toxic concentrations, leading to inactivation of photosynthesis. In this report we studied mechanisms of copper toxicity to the photosynthetic apparatus of Acidiphilium rubrum, an acidophilic purple bacterium that uses Zn2+ instead of Mg2+ as the central metal in the BChl molecules ([Zn]-BChl) of its reaction centres (RCs) and light harvesting proteins (LH1). We used a combination of in vivo measurements of photosynthetic activity (fast fluorescence and absorption kinetics) together with analysis of metal binding to pigments and pigment-protein complexes by HPLC-ICP-sfMS to monitor the effect of Cu2+ on photosynthesis of A. rubrum. Further, we found that its cytoplasmic pH is neutral. We compared these results with those obtained from Rhodospirillum rubrum, a purple bacterium for which we previously reported that the central Mg2+ of BChl can be replaced in vivo in the RCs by Cu2+ under environmentally realistic Cu2+ concentrations, leading to a strong inhibition of photosynthesis. Thus, we observed that A. rubrum is much more resistant to copper toxicity than R. rubrum. Only slight changes of photosynthetic parameters were observed in A. rubrum at copper concentrations that were severely inhibitory in R. rubrum and in A. rubrum no copper complexes of BChl were found. Altogether, the data suggest that [Zn]-BChl protects the photosynthetic apparatus of A. rubrum from detrimental insertion of Cu2+ (trans-metallation) into BChl molecules of its RCs.


Assuntos
Acidiphilium/química , Bacterioclorofila A/química , Cobre/química , Complexos de Proteínas Captadores de Luz/química , Zinco/química , Cromatografia Líquida de Alta Pressão , Cobre/toxicidade , Concentração de Íons de Hidrogênio , Magnésio/química , Espectrometria de Massas , Fotossíntese , Rhodospirillum rubrum/química , Relação Estrutura-Atividade
15.
Aquat Toxicol ; 235: 105818, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838497

RESUMO

Toxicity of lanthanides is generally regarded as low, and they even have been suggested to be beneficial at low concentrations. This research was conducted to investigate effects of Lanthanum (La) on Desmodesmus quadricauda, a freshwater green microalga. The algal cultures were treated with nanomolar La concentrations under controlled environmentally relevant conditions. Intracellular localization of La was analyzed with µXRF tomography in frozen-hydrated samples. At sublethal concentration (128 nM) La was in hotspots inside the cells, while at lethal 1387 nM that led to release of other ions (K, Zn) from the cells, La filled most of the cells. La had no clear positive effects on growth or photosynthetic parameters, but increasing concentrations led to a dramatic decrease in cell counts. Chlorophyll fluorescence kinetic measurements showed that La led to the inhibition of photosynthesis. Maximal photochemical quantum yield of the PSII reaction center in dark-adapted state (Fv/Fm) decreased at > 4.3 nM La during the 2nd week of treatment. Minimum dark-adapted fluorescence quantum yield (F0) increased at > 13.5 nM La during the 2nd week of treatment except for control (0.2 nM La, baseline from chemicals) and 0.3 nM La. NPQ at the beginning of the actinic light phase showed significant increase for all the treatments. Metalloproteomics by HPLC-ICPMS showed that La binds to a >500 kDa soluble protein complex already in the sub-nM range of La treatments, in the low nM range to a small-sized (3 kDa) soluble peptide, and at >100 nM La additionally binds to a 1.5 kDa ligand.


Assuntos
Clorófitas/efeitos dos fármacos , Lantânio/toxicidade , Poluentes Químicos da Água/toxicidade , Clorofila/metabolismo , Clorófitas/fisiologia , Fluorescência , Lantânio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
16.
J Exp Bot ; 72(8): 3320-3336, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544825

RESUMO

Phomopsis. longicolla is a hemibiotrophic fungus causing significant soybean yield loss worldwide. To reveal the role of zinc in plant-pathogen interactions, soybean seedlings were grown hydroponically with a range of Zn concentrations, 0.06 µM (deficient, Zn0), 0.4 µM (optimal growth), 1.5 µM, 4 µM, 12 µM, and toxic 38 µM, and were subsequently inoculated with P. longicolla via the roots. In vivo analysis of metal distribution in tissues by micro-X-ray fluorescence showed local Zn mobilization in the root maturation zone in all treatments. Decreased root and pod biomass, and photosynthetic performance in infected plants treated with 0.4 µM Zn were accompanied with accumulation of Zn, jasmonoyl-L-isoleucine (JA-Ile), jasmonic acid, and cell wall-bound syringic acid (cwSyA) in roots. Zn concentration in roots of infected plants treated with 1.5 µM Zn was seven-fold higher than in the 0.4 µM Zn treatment, which together with accumulation of JA-Ile, cwSyA, cell wall-bound vanilic acid and leaf jasmonates contributed to maintaining photosynthesis and pod biomass. Host-pathogen nutrient competition and phenolics accumulation limited the infection in Zn-deficient plants. The low infection rate in Zn 4 µM-treated roots correlated with salicylic and 4-hydroxybenzoic acid, and cell wall-bound p-coumaric acid accumulation. Zn toxicity promoted pathogen invasion and depleted cell wall-bound phenolics. The results show that manipulation of Zn availability improves soybean resistance to P. longicolla by stimulating phenolics biosynthesis and stress-inducible phytohormones.


Assuntos
Zinco , Phomopsis , Raízes de Plantas , Plântula
17.
J Exp Bot ; 71(22): 7257-7269, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32841350

RESUMO

Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


Assuntos
Arabidopsis , Medicago truncatula , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
18.
Plant Physiol Biochem ; 155: 252-261, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32781275

RESUMO

This work reveals, by imaging in vivo measurements in the Cd/Zn hyperaccumulator Arabidopsis halleri, in how far Cd stress affects macronutrient (Ca, K) and micronutrient (Fe, Zn) distribution in the leaves. We directly correlate these changes with biophysics of the photosynthetic light reactions. Plants were grown for 2 months at 10 µM Zn (=control), and supplemented with 10, 15, 50 or 75 µM Cd. Direct imaging of OJIP transients revealed that bundle sheath cells were more sensitive to Cd toxicity than mesophyll cells further from the vein. Progressive inhibition of photosystem (PS) II reaction centres and decrease in quantum yield of electron transport between QA and QB and further to PSI acceptors was observed. This was correlated with the decreased dynamics of QA re-oxidation and lower operating efficiency of PSII. Analysis by a benchtop micro X-ray fluorescence device showed that Cd mostly accumulated in the veins, and restricted Fe and Zn distribution from the veins, especially in the 75 µM Cd, while K concentration increased in the whole leaf. Calcium distribution was apparently not affected by Cd, but Cd excess inhibited trichome formation and thereby diminished total Ca concentration in the leaves. The results point to differential tissue sensitivity to Cd, evident by heterogeneous inhibition of photosynthesis. Part of this may be a result of selective disturbances in the leaf nutrient homeostasis. The better photosynthetic performance away from the veins compared to the bundle sheath cells, however, indicates that direct inhibition of photosynthesis by Cd dominates over inhibition caused by micronutrient deficiency.


Assuntos
Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Fotossíntese , Estresse Fisiológico , Arabidopsis/fisiologia , Clorofila , Micronutrientes , Folhas de Planta , Tricomas , Zinco/metabolismo
19.
Front Plant Sci ; 11: 739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582260

RESUMO

Zinc is essential for the functioning of numerous proteins in plants. To investigate how Zn homeostasis interacts with virus infection, Zn-tolerant Noccaea ochroleucum plants exposed to deficient (Zn'0'), optimal (Zn10), and excess Zn (Zn100) concentrations, as well as Cd amendment, were infected with Turnip yellow mosaic virus (TYMV). Imaging analysis of fluorescence kinetics from the µs (OJIP) to the minutes (Kautsky effect, quenching analysis) time domain revealed strong patchiness of systemic virus-induced photosystem II (PSII) inhibition. That was more pronounced in Zn-deficient plants, while Zn excess acted synergistically with TYMV, in both cases resulting in reduced PSII reaction centers. Infected Cd-treated plants, already severely stressed, showed inhibited non-photochemical quenching and PSII activity. Quantitative in situ hybridization at the cellular level showed increased gene expression of ZNT5 and downregulation of HMA4 in infected Zn-deficient leaves. In Zn10 and Zn100 infected leaves, vacuolar sequestration of Zn increased by activation of HMA3 (mesophyll) and MTP1 (epidermis). This correlated with Zn accumulation in the mesophyll and formation of biomineralization dots in the cell wall (Zn100) visible by micro X-ray fluorescence tomography. The study reveals the importance of adequate Zn supply and distribution in the maintenance of photosynthesis under TYMV infection, achieved by tissue-targeted activation of metal transporter gene expression.

20.
Plant Methods ; 16: 82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523612

RESUMO

BACKGROUND: Many metals are essential for plants and humans. Knowledge of metal distribution in plant tissues in vivo contributes to the understanding of physiological mechanisms of metal uptake, accumulation and sequestration. For those studies, X-rays are a non-destructive tool, especially suited to study metals in plants. RESULTS: We present microfluorescence imaging of trace elements in living plants using a customized benchtop X-ray fluorescence machine. The system was optimized by additional detector shielding to minimize stray counts, and by a custom-made measuring chamber to ensure sample integrity. Protocols of data recording and analysis were optimised to minimise artefacts. We show that Zn distribution maps of whole leaves in high resolution are easily attainable in the hyperaccumulator Noccaea caerulescens. The sensitivity of the method was further shown by analysis of micro- (Cu, Ni, Fe, Zn) and macronutrients (Ca, K) in non-hyperaccumulating crop plants (soybean roots and pepper leaves), which could be obtained in high resolution for scan areas of several millimetres. This allows to study trace metal distribution in shoots and roots with a wide overview of the object, and thus avoids making conclusions based on singular features of tiny spots. The custom-made measuring chamber with continuous humidity and air supply coupled to devices for imaging chlorophyll fluorescence kinetic measurements enabled direct correlation of element distribution with photosynthesis. Leaf samples remained vital even after 20 h of X-ray measurements. Subtle changes in some of photosynthetic parameters in response to the X-ray radiation are discussed. CONCLUSIONS: We show that using an optimized benchtop machine, with protocols for measurement and quantification tailored for plant analyses, trace metal distribution can be investigated in a reliable manner in intact, living plant leaves and roots. Zinc distribution maps showed higher accumulation in the tips and the veins of young leaves compared to the mesophyll tissue, while in the older leaves the distribution was more homogeneous.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...